skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Weinstock, Daniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Mott metal–insulator transitions possess electronic, magnetic, and structural degrees of freedom promising next‐generation energy‐efficient electronics. A previously unknown, hierarchically ordered, and anisotropic supercrystal state is reported and its intrinsic formation characterized in‐situ during a Mott transition in a Ca2RuO4thin film. Machine learning‐assisted X‐ray nanodiffraction together with cryogenic electron microscopy reveal multi‐scale periodic domain formation at and below the film transition temperature (TFilm ≈ 200–250 K) and a separate anisotropic spatial structure at and aboveTFilm. Local resistivity measurements imply an intrinsic coupling of the supercrystal orientation to the material's anisotropic conductivity. These findings add a new degree of complexity to the physical understanding of Mott transitions, opening opportunities for designing materials with tunable electronic properties. 
    more » « less
  2. null (Ed.)
  3. Abstract Hydrogen fuel cells and electrolyzers operating below 600 °C, ideally below 400 °C, are essential components in the clean energy transition. Yttrium‐doped barium zirconate BaZr0.8Y0.2O3‐d(BZY) has attracted a lot of attention as a proton‐conducting solid oxide for electrochemical devices due to its high chemical stability and proton conductivity in the desired temperature range. Grain interfaces and topological defects modulate bulk proton conductivity and hydration, especially at low temperatures. Therefore, understanding the nanoscale crystal structure dynamics in situ is crucial to achieving high proton transport, material stability, and extending the operating range of proton‐conducting solid oxides. Here, Bragg coherent X‐ray diffractive imaging is applied to investigate in situ and in 3D nanoscale dynamics in BZY during hydration over 40 h at 200 °C, in the low‐temperature range. An unexpected activity of topological defects and subsequent cracking is found on a nanoscale covered by the macroscale stability. The rearrangements in structure correlate with emergent regions of different lattice constants, suggesting heterogeneous hydration. The results highlight the extent and impact of nanoscale processes in proton‐conducting solid oxides, informing future development of low‐temperature protonic ceramic electrochemical cells. 
    more » « less
  4. Abstract Non‐equilibrium defects often dictate the macroscopic properties of materials. They largely define the reversibility and kinetics of processes in intercalation hosts in rechargeable batteries. Recently, imaging methods have demonstrated that transient dislocations briefly appear in intercalation hosts during ion diffusion. Despite new discoveries, the understanding of impact, formation and self‐healing mechanisms of transient defects, including and beyond dislocations, is lacking. Here, operando X‐ray Bragg Coherent Diffractive Imaging (BCDI) and diffraction peak analysis capture the stages of formation of a unique metastable domain boundary, defect self‐healing, and resolve the local impact of defects on ionic diffusion in NaxNi1−yMnyO2intercalation hosts in a charging sodium‐ion battery. Results, applicable to a wide range of layered intercalation materials due to the shared nature of framework layers, elucidate new dynamics of transient defects and their connection to macroscopic properties, and suggest how to control the nanostructure dynamics. 
    more » « less
  5. Abstract Structural and ion‐ordering phase transitions limit the viability of sodium‐ion intercalation materials in grid scale battery storage by reducing their lifetime. However, the combination of phenomena in nanoparticulate electrodes creates complex behavior that is difficult to investigate, especially on the single‐nanoparticle scale under operating conditions. In this work, operando single‐particle X‐ray diffraction (oSP‐XRD) is used to observe single‐particle rotation, interlayer spacing, and layer misorientation in a functional sodium‐ion battery. oSP‐XRD is applied to Na2/3[Ni1/3Mn2/3]O2, an archetypal P2‐type sodium‐ion‐positive electrode material with the notorious P2‐O2 phase transition induced by sodium (de)intercalation. It is found that during sodium extraction, the misorientation of crystalline layers inside individual particles increases before the layers suddenly align just prior to the P2‐O2 transition. The increase in the long‐range order coincides with an additional voltage plateau signifying a phase transition prior to the P2‐O2 transition. To explain the layer alignment, a model for the phase evolution is proposed that includes a transition from localized to correlated Jahn–Teller distortions. The model is anticipated to guide further characterization and engineering of sodium‐ion intercalation materials with P2‐O2 type transitions. oSP‐XRD, therefore, opens a powerful avenue for revealing complex phase behavior in heterogeneous nanoparticulate systems. 
    more » « less